SnakeGX: a sneaky attack against SGX Enclaves

Flavio Toffalini', Mariano Graziano?, Mauro Conti3, and Jianying Zhou!

1 Singapore University of Technology and Design, Singapore,
flavio.toffalini@mymail.sutd.edu.sg, jianying zhou@sutd.edu.sg
2 (isco Systems, Inc., magrazia@cisco.com
3 University of Padua, Italy, conti@math.unipd.it

Abstract. Intel Software Guard eXtension (SGX) is a technology to
create enclaves (i.e., trusted memory regions) hardware isolated from a
compromised operating system. Recently, researchers showed that un-
privileged adversaries can mount code-reuse attacks to steal secrets from
enclaves. However, modern operating systems can use memory-forensic
techniques to detect their traces. To this end, we propose SnakeGX,
an approach that allows stealthier attacks with a minimal footprint;
SnakeGX is a framework to implant a persistent backdoor in legitimate
enclaves. Our solution encompasses a new architecture specifically de-
signed to overcome the challenges SGX environments pose, while preserv-
ing their integrity and functionality. We thoroughly evaluate SnakeGX
against StealthDB, which demonstrates the feasibility of our approach.

Keywords: SGX - TEE - code-reuse attacks

1 Introduction

Intel Software Guard eXtention (SGX) is a trusted computing technology that
enables the creation of restricted user-space memory regions, called enclaves [34].
When digitally-signed, an enclave is a Trusted Execution Environment (TEE)
that hardware-supported microcode isolates. This design, coupled with a full
encryption of an enclave’s content, provides advanced protection mechanisms
and a trusted communication channel between the enclave and the host—the
main application the enclave belongs to.

The success of SGX stems from its strict threat model. The attacker model—
the Tago attacker [15]—considers the OS malicious: one can thus tamper with
applications, modify their behavior, exfiltrate sensitive information, and so on.
In this context, SGX disallows kernel- and user-space code to manipulate enclave
memory pages, thus guaranteeing integrity and confidentiality in the presence of
any lago attacker.

The strong isolation introduced by SGX stimulated researchers and practi-
tioners to develop new attacks vectors [14,29, 23, 27]. Among them, an interest-
ing research line is to exploit memory-corruption errors inside the enclave code
and run one-shot code-reuse attacks to steal enclave secrets (e.g., cryptographic
keys) [40]. Recently, we observed many solutions that identify such flaws in en-
claves [17,44] and new code-reuse techniques tailored for SGX [27,12]. First,

2 F. Toffalini et al.

Lee et al. discussed Dark-ROP [27] that combines a colluded OS and oracles
to identify gadgets for return-oriented programming (ROP) [40]. An advanced
technique was proposed by Biondo et al. with Guard’s Dilemma [12] that does
not require the assistance of the OS to perform the attack. In this scenario,
however, the authors did not consider an OS that may employ existing memory
forensic techniques to identify the intrusions [42, 32, 25, 22]. For instance, in case
of external intrusion into a remote server running SGX enclaves, the adversary
is also interested in reducing the amount of traces left; otherwise, analysts may
detect the intrusion and act consequently. This is even more critical in case the
enclave secret changes and the adversary has to repeat the attack many times.
Consequently, we pose a new research question:

Can we carry out an attack against SGX enclaves without being noticed by
an healthy Operating System?

We answer this question with a new approach that pushes further the stealth-
iness of code-reuse attacks in non-compromised OSs. Our intuition is to implant
a permanent payload inside the target enclave as a backdoor, thus exploiting
the SGX protections to avoid inspection. Our strategy definitely overcomes the
limitations of the state-of-the-art; the adversary does not need to repeat the at-
tack and we minimize the traces left. We implement our intuition in SnakeGX,
a framework to implant data-only backdoors in legitimate enclaves. We build on
the concept of data-only malware [46] but extend it with a novel architecture to
adhere to the strict requirements of SGX environments.

Contrary to prior one-shot attacks [12, 27], our backdoor acts as an additional
secure function (Section 5), which is: (i) persistent in the context of the enclave,
(ii) stateful as it maintains an internal state, (iii) interactive with the host by
means of seamless context switches. Core to this is the identification of a design
flaw that affects the Intel SGX Software Development Kit (SDK) and allows an
attacker to trigger arbitrary code in enclaves (Section 4)!. SnakeGX facilitates
the creation of versatile backdoors concealed in enclaves that evade memory
forensic analysis by inheriting all the benefits SGX provides. Our aim is to raise
awareness of TEEs—and SGX in particular—and how attackers may abuse that,
which requires the community to reason more on the need of monitoring systems
and advanced forensic techniques for SGX.

We evaluate the properties of SnakeGX against StealthDB [45], an open-
source project that implements an encrypted database on top of SGX enclaves.
In particular, StealthDB uses dynamically generated AES keys to protect the
database’s fields, thus urging the need of multiple one-shot attacks. SnakeGX
exfiltrates the keys upon the verification of specific conditions with a minimum
footprint. Our evaluation focuses on three aspects of SnakeGX (Section 6). First,
we illustrate our use-case: we show how SnakeGX achieves its goals while preserv-
ing the original functionality of the enclave. Second, we measure and compare the
stealthiness of SnakeGX against the state-of-the-art. Finally, we discuss possible
countermeasures.

In summary, we make the following contributions:

! 'We reported the flawed behavior to Intel, which acknowledged it.

SnakeGX: a sneaky attack against SGX Enclaves 3

— We propose SnakeGX, a framework built around an Intel SGX SDK de-
sign flaw (Section 4), and a novel architecture designed to create persistent,
stateful, and interactive data-only malware for SGX (Section 5).

— We demonstrate the feasibility of SnakeGX on a real-world open source
project?.

— We measure and compare the attack footprint with current SGX state-of-
the-art techniques (Section 6).

2 Background

In this section, we illustrate the technical background for SGX (Section 2.1) and
discuss code-reuse attacks applied to SGX enclaves (Section 2.2).

2.1 SGX Overview

The Intel SGX technology provides secure containers that execute so-called se-
cure functions in an isolated context, thereby shielding them from tampering
and monitoring attempts. These containers, properly known as enclaves, are the
core of SGX programming patterns; they are digitally signed at compile time
and represent the building blocks on which SGX achieves attestation.

SGX achieves a strong isolation by implementing a fine-grain memory access
control at Memory Management Unit (MMU) level. These checks are imple-
mented by using microcode and thus hardware assistant. This strategy allows
SGX to validate memory access independently by the Operating System (OS).
At enclave boot time, the OS sets enclave page permission. If those permissions
differ from enclave signature, the microcode will raise an exception. Also, the
kernel cannot change the page permission at run-time since microcode performs
a double-check. Therefore, SGX ensures that the enclave is loaded as intended.
This means that classic hacking strategies, which aim at setting a page as ex-
ecutable, are not useful against SGX. Some researchers exploited enclave mis-
configurations to load a shellcode [12], but this is not the standard case. Since
we cannot load custom code in an enclave, we opted for code-reuse program-
ming (like ROP) [13]. This strategy allows us to re-use code already in memory
without breaking enclave attestation.

In Figure 1, we depict two basic interaction mechanisms between enclave and
host process: synchronous and asynchronous. The synchronous interaction is im-
plemented by two new leaf functions: EENTER and EEXIT. This interaction is used
to invoke secure functions within the enclave. The asynchronous one, instead,
handles enclave exceptions (both software and hardware) and it is represented
by an Asynchronous Enclave Exit (AEX). When an AEX happens, the exception
is first thrown to the host (i.e., to an Asynchronous Exit Pointer — AEP) that
will examine the exception in the untrusted memory. The AEP can, eventually,
resume the enclave execution through the leaf function ERESUME. Finally, the

2 SnakeGX’s source code is available at https://github.com/tregua87/snakegx.

4 F. Toffalini et al.

Synchronous
interaction

Host Process S Enclave
: EENTER :
EEXIT
ERESUME
AEX

Asynchronous

interaction

Fig. 1: The two types of enclave interaction, the pair EENTER and EEXIT are used
in the synchronous interaction, while the pair AEX and ERESUME are used in the
asynchronous one.

Instr. Leaf RAX RBX RCX
EENTER 0x02 TCS AEP
ERESUME 0x03 TCS AEP

EEXIT 0x04 Target Address
Table 1: ENCLU registers specification for x86 64bit.

enclave can decide whether to internally manage the exception or interrupt the
secure function execution.

The leaf functions described so far are implemented by using the real opcode
ENCLU, that is available only in user-space. In x86 64bit, which is the platform
we refer, we can execute EENTER, ERESUME, or EEXIT by calling ENCLU and setting
CPU registers as described in Table 1.

Reading Table 1, we notice that EENTER and ERESUME require a Thread Con-
trol Structure (TCS) address as an input. A TCS is a structure that represents
a thread in SGX programming pattern. This means that the threading policy is
handled by the untrusted memory. EEXIT, instead, requires only a virtual-address
as a target address in register rbx. This address contains the next instruction to
execute inside the host process after the control leaves the enclave. EENTER and
ERESUME can be used only by the host process in user-space, while EEXIT works
only from inside the enclave.

2.2 Code-Reuse Attacks for SGX

In this section, we discuss code-reuse attacks techniques applied to the SGX
realm and relative limitations.

Generally speaking, a code-reuse payload [12,27] requires specific structures
that point to code inside the enclave (i.e., gadgets). However, SGX does not allow

SnakeGX: a sneaky attack against SGX Enclaves 5

an adversary to arbitrary write these structures inside an enclave. To achieve the
intrusion, there are two strategies from the literature: (i) inject the entire payload
inside the victim enclave as a malicious input buffer [27], or (ii) maintain the pay-
load in the untrusted memory and tamper with the rsp register to point to the
payload (i.e., stack-pivoting) [12]. In both cases, the adversary has to maintain
a copy of the payload in the untrusted memory. This enables an analyst to use
known memory forensic techniques [42, 32, 25,22] to detect the payload, whose
precision strictly depends on the amount of traces in memory. Furthermore, the
adversary has to create new payloads every time she performs an attack, i.e.,
a one-shot payload gets corrupted after being triggered [46]. These limitations
increase the risk of being detected. Therefore, minimizing the amount of data in
memory improves the probability of success of an intrusion. We achieve this goal
with the installation of a permanent backdoor inside the enclave, thus avoiding
the need of new attacks and evading the detection as well. In this way, SnakeGX
makes stealthier and more sophisticated attacks than previous one-shot ones.

3 Threat Model and Assumptions

In this section, we first describe our threat model. Then, we perform a pre-
liminary analysis to measure the widespread of our assumptions over real SGX
open-source projects.

Threat Model. One of the differences between SnakeGX and the previous
one-shot code-reuse works is in the threat model. Advanced code-reuse tech-
niques require an unprivileged attacker [12]. However, a non-compromised host
can identify the presence of an adversary in the system memory (Section 2.2).
Therefore, we have to consider three players in our scenarios: the attacker, the
victim enclave, and the host. Below, we list their requirements, respectively.

Attacker Capabilities. In our scenario, the attacker is highly motivated
and has the following assumptions:

— The enclave contains a memory corruption vulnerability. The ad-
versary is aware of a memory corruption error (e.g., a buffer overflow) in the
target enclave. This error can be exploited to take control of the enclave it-
self. Having a memory-corruption is an assumption already taken by similar
works [12,27]. This is even more likely in projects that use SGX as a sub-
system container [11,43,39,10]. Such projects host out-of-the-box software
and, therefore, enclaves inherit their vulnerabilities.

— A code-reuse technique. SnakeGX does not require any specific code-
reuse techniques (e.g., ROP, JOP, BROP, SROP) as long as this enables the
attacker to take control of the enclave execution. For the sake of simplicity,
we use the term chain to indicate a generic code-reuse payload (e.g., a ROP-
chain).

— Knowledge of victim enclave memory layout. The attacker can infer
the memory layout by inspecting the victim address-space. It is also possible
to leak memory information from within the enclave, as also assumed in [12].

6 F. Toffalini et al.

— Adversary Location. In our scenario, the adversary resides in user-space.
SnakeGX will reduce the adversary footprint, thus evading standard memory
forensic techniques [42, 32,25, 22], whose effectiveness relies on the amount
of traces left in memory (see Section 2.2).

Enclaves Capabilities. These are the assumptions for the enclave:

— Legitimate enclaves. The system contains one or more running enclaves.
It is possible to exploit enclaves based on both SGX 1.0 or 2.0.

— Intel SGX SDK usage. The victim enclave should be implemented by us-
ing the standard Intel SGX Software Development Kit (SDK), we tested our
approach with all the SDK versions currently available.? This is a reasonable
assumption since the Intel SGX SDK provides a framework for developing
applications on different OSs: Linux and Windows.

— Multi-threading. This is not strictly required, but the victim enclave
should have at least two threads for a more general approach. The ratio-
nale behind this requirement is that the proposed implementation may dis-
able a trusted thread [2] and in case of a single-thread application this is a
problem. An enclave without free threads cannot process secure functions,
thus attracting the analysts attention. We might partially ease this require-
ment with the introduction of SGX 2.0. However, multi-thread enclaves are
a reasonable assumption since different open-source projects use already this
feature [49, 8, 6,43, 45] and SGX-based applications are growing in complex-

ity.
Host Capabilities. This is the assumption for the host:

— Memory Inspection. The host can inspect the processes memory and use
standard approaches to detect traces of previous or ongoing attacks [42, 32,
25, 22].

We extend the threat model of previous works [12] by assuming the host
can perform memory forensic analysis. Therefore, an adversary has the need of
hiding her presence in the machine and minimizing the interactions with the
victim enclave.

Preliminary Analysis of Assumptions. We collected a set of 27 stand-alone
SGX open-source projects from an online hub [9] to investigate the correctness
of our assumptions (see full list in Appendix D). The results show that among
the 27 projects, 24 of them were based on the Intel SGX SDK, while others were
developed with Graphene [43], Open Enclave SDK [28], or contained mocked
enclaves. From the Intel SGX SDK based projects, we counted 31 enclaves in
total, among which 24 were multi-threading (77%). This preliminary analysis
indicates that our threat model fulfills real scenarios. Furthermore, we discuss
the porting of SnakeGX over SDKs other than the Intel one in Section 7.

3 At the time of writing, the last SDK version is 2.9.

SnakeGX: a sneaky attack against SGX Enclaves 7

4 Intel SGX SDK Design Limitation

SnakeGX can trigger a payload inside the enclave without the need of repeating
a new attack. This feature is challenging because the enclave has a fixed entry
point, thus an adversary cannot activate arbitrary code inside the enclave from
the untrusted memory. SnakeGX achieves this goal through a design error that
affects all the SGX Software Development Kit (SDK) versions released by Intel.
In this section, we make a deep analysis of the Intel SGX SDK in order to
highlight these issues and propose possible mitigations.

4.1 SDK Overview

SGX specifications define only basic primitives for creating and interacting with
an enclave. Thus, Intel also provides an SDK that helps building SGX-based
applications. The Intel SGX SDK contains a run-time library that is composed
by two parts: an untrusted run-time library (uRts) that is contained in the host
process, and a trusted run-time library (tRts) that is contained in the enclave.
Specifically, uRts handles operations like multi-threading, while tRts manages
secure functions dispatching and context-switch.

The Intel SGX SDK exposes a set of APIs that are built on top of the
leaf functions described in Section 2. ECALL, ERET, OCALL, and ORET are the
most important APIs for SnakeGX. Figure 2 shows the interaction between
the host process and the enclave. At the beginning, the host process invokes a
secure function by using an ECALL, which is implemented by means of an EENTER
(Figure 2, step 1). When a secure function is under execution, it may need to
interact with the OS (e.g., for writing a file). Since a secure function cannot
directly invoke syscalls, Intel SGX SDK uses additional functions that reside
in the untrusted memory (i.e., called outside functions). A secure function can
invoke an outside function by using an 0CALL (Figure 2, point 2), that performs
two steps: (i) save the enclave state, and (ii) pass the control to the outside
function. More precisely, OCALL first saves the secure function state by using a
dedicate structure called ocall_context, which we deeply analyze in Section 4.2.
Then, OCALL uses the EEXIT leaf function to switch the context back to the uRts,
that finally dispatches the actual outside function. Once an outside function
ends, the control passes back to the secure function by using an ORET (Figure 2,
point 3). Since SGX does not allow to trigger arbitrary code from the untrusted
memory (i.e., the enclave entry point is fixed), the Intel SGX SDK implements
ORET as a special secure function (whose index is —2) that follows the standard
ECALL specifications. As we discuss in the next sessions, ORET has the ability of
activating arbitrary portion of code in an enclave. Normally, the ORET restores
the state previously stored by the OCALL. Once the ORET is done, the secure
function can continue its execution, and finally, invoke an ERET to terminate
(Figure 2, point 4).

8 F. Toffalini et al.

Host Process Enclave

(1) ecall(S1)

main() { $10{

ecall(S1); ocall(01);
) (2 ocall(O1) eret()
010{

\\ doing stuffs ® oret(01)

oret();
})

@) eret(S1) Time

Fig.2: Example of interaction between host process and enclave by using the
Intel SGX SDK. The host process invokes the secure function S1 from the main
function (ECALL). S1 function invokes O1 (OCALL), and this latter returns to S1
(ORET). Finally, S1 returns back to the main function (ERET).

4.2 OCALL Context Setting

The ocall _context is the structure that holds the enclave state once an 0CALL
is invoked. The way in which the structure is set slightly differs between Intel
SGX SDK before and after version 2.0. In this discussion, we consider the case
of the Intel SGX SDK greater than 2.0. However, a similar approach can be also
applied to previous versions.

New ocall_contextes are located on top of the stack, as shown in Figure 3,
moreover, the new structures should follow a specific setting. In particular, three
ocall_context fields should be tuned:

— pre_last_sp must point to a previous ocall_context or to the stack base
address. This needs to handle a chain of nested ECALLs, which are basically
ECALLs performed by an outside function.

— ocall_ret is used from SDK 2.0 to save extended process state [7]. More
precisely, the system allocates a xsave_buff pointed by ocall _ret. This
buffer must be located after the new ocall_context.

— rbp must point to a memory location that contains the new frame pointer and
the return address, consecutively. This is because the asm_oret () function
will use this structure as epilogue [12].

It is important to underline that SGX does not validate ocall_context integrity.
Therefore, an attacker that takes control of an enclave may craft a fake ocall -
context. This problem has been existing in all SDK version available so far. In
the next section, we discuss why this is an underestimated problem and what
threats can lead to.

SnakeGX: a sneaky attack against SGX Enclaves 9

Previous
ocall_context

Addresses
Growing Direction
Previous stack
Top of the stack frame
L o
Cocall_context) .
typedef struct _ocall_context_t
{
Stack Growing uintptr_t pre_last_sp;
Direction xsave_buff -
uintptr_t rbp;
uintptr_t ocall_ret;
ret addr. } ocall_context_t;
frame pnt.

Fig.3: Example of ocall_context disposition in an enclave stack, the fields
point to structures within the stack itself in a precise order.

4.3 Exploiting an ORET as a Trigger

ORET is the only secure function that can trigger arbitrary code in an enclave.
Therefore, an adversary enabled to abusing this function has also privileged ac-
cess to the enclave itself. To understand why it is possible, we analyze the pseudo-
code in Figure 4, which shows the do_oret() secure function implementation.
Essentially, do_oret () extracts the thread-local storage (TLS) from the current
thread (Line 6). The TLS contains information of the last ocall_context saved.
After some formal controls (Line 8), the ocall_context structure is used to re-
store the secure function execution through the asm_oret () function (Line 15).
The formal checks performed by do_oret() over the previous ocall_context
are quite naive. There are three basic requirements: (i) the ocall_context must
be within the current stack space, (ii) the ocall_context must contain a con-
stant (hard-coded) magic number, and (iii) the pre_last_sp must point before
the actual ocall _context.

After the previous analysis, we realized that the Intel SGX SDK has no
strict mechanisms to verify the integrity of an ocall_context. In other words,
any ocall_context that fulfills the previous conditions can be used to restore
any context in an enclave. First steps in this direction were explored by previous
works [12], which exploited asm_oret () simply to control the processor registers
in a one-shot code-reuse attack. However, we want to push further the limitation
of the Intel SGX SDK and show which consequences these issues can lead to.
In fact, SnakeGX uses a combination of ORET and tampered ocall_contextes
to restore arbitrary chains inside the enclave without performing further ex-
ploits. In particular, SnakeGX abuses of this flaw for two reasons: (i) as a trigger

10 F. Toffalini et al.

1 sgx-status_-t do_oret ()

: {
s // TLS structure
i tls = get_thread_data();

// last ocall_context structure
s ocall_context = tls—>last_sp;

s if (!formal_requirements(ocall_context))
9 return SGXERRORUNEXPECTED;

i1 // set TLS to point to previous ocall_context
2 tls—>last_sp = ocall_context—>pre_last_sp;

14 // restore last ocall_context
15 asm-_oret (ocall_context);

17 // in the normal execution
1is // the control should not reach this point
19 return SGXERROR.UNEXPECTED;

Fig. 4: Simplified do_oret () pseudo-code.

to activate a custom payload hidden inside the enclave; (ii) for the payload to
perform a reliable context-switch between host and enclave. Therefore, crafting
malicious ocall_contextes leads to the possibility of implanting backdoor in a
trusted enclave without tampering the enclave code itself. As such, the back-
door is shielded by the SGX features by design. Moreover, the fact of using a
single ORET to trigger the backdoor reduces the interactions required by a weak
adversary for new attacks. We discuss technical details in Section 5 and show
our proof-of-concept (PoC) in Section 6.

4.4 Mitigations

There are many strategies to improve the ocall_context integrity. A pure soft-
ware solution could be computing an encrypted hash of ocall_context when it
is generated. The hash might be appended as an extra field to the structure. An-
other approach, instead, could be encrypting the entire structure itself. However,
pure software mitigation can be potentially bypassed by any code-reuse attack.
Once the attacker gains control of the enclave, she can basically revert or fake
any encrypted processes. A stronger solution could be introducing dedicated leaf
functions that manage the generation and consumption of ocall_contextes. For
instance, during an 0CALL, the enclave might use a dedicated leaf function that
creates an ocall_context and saves a copy (i.e., an hash) in a memory location
out of the attacker control (similar to TCS or SECS pages [18]). An ORET, then,
should use another leaf function that performs extra checks and validate the

SnakeGX: a sneaky attack against SGX Enclaves 11

integrity of the ocall_context. This solution might raise the bar for attacks,
but it has two important drawbacks: (i) it forces Intel to re-thinking the SGX
structures at low level, (ii) it leaves less freedom to developers that want to
adapt the Intel SGX SDK to their own needs (e.g., to customize or introduce
new structures). After this consideration, we believe this issue would last for
long before being fixed. We reported this limitation to Intel that is reviewing its
memory corruption protections.

5 SnakeGX

SnakeGX is the first framework that facilitates the implanting of persistent,
stateful, and interactive backdoors inside SGX enclaves. The framework design
is challenging because we want to preserve the original enclave functionality and
configuration. Even though SGX 2.0 encompasses run-time page permissions
setting [3], an unexpected configuration may attract analysts attention (i.e.,
the host can read the enclave page permissions). On the contrary, our solutions
purely rely on code-reuse techniques that do not affect the enclave functionality
and configuration. To the best of our knowledge, no previous works on SGX
code-reuse attacks never addressed these challenges. We also recall we assume
two conditions: (i) the target enclave has to be built with the Intel SGX SDK,
and (ii) it contains at least one exploitable memory-corruption vulnerability
(e.g., a stack-based buffer overflow).

5.1 Overview

The backdoor implanting is composed by three main phases: (i) enclave memory
analysis, (ii) installation phase, and (iii) payload triggering.

Enclave Memory Analysis. In this phase, the attacker has to achieve two
goals: (i) inspect the process memory layout to identify enclave elements, and
(ii) find a suitable location to install SnakeGX. Since SGX does not implement
any memory layout randomization, an adversary can easily inspect the victim
process memory by only using user-space privileges (e.g., the enclave pages are
assigned to a virtual device called isgz in Linux environments). Moreover, we
target enclaves made with the Intel SGX SDK that follow the Enclave Linear
Address Range (ELRANGE) [18]. As a result, an adversary with solely user-
space privileges can obtain: (i) the enclave base address, (ii) the size, and (iii) the
enclave trusted thread locations. In Section 5.2, we discuss how to obtain a
reliable memory location.

Payload Installation. The installation phase is a one-shot attack that ex-
ploits an enclave vulnerability and uses a code-reuse technique for installing the
payload. This attack has to achieve three goals: (i) copy the payload inside an
enclave (e.g., the chain and the fake ocall_context), (ii) set a hook to trig-
ger the payload, (iii) resume the normal application behavior. These three goals
make this phase quite critical for three reasons. First, either enclave and host
process have to remain available after the payload installation, or else we have

12 F. Toffalini et al.

to re-start the enclave. Second, the enclave behavior does have not to change,
or else the host should realize the attack. Finally, we have to remove the pay-
load in the untrusted memory, or else it could be detected. This phase can be
implemented by using any current code-reuse attacks for SGX enclaves [27,12].

Payload Triggering. After the installation phase, the adversary only needs
to trigger an ORET to activate the payload (Section 5.3). This allows an external
adversary to activate the payload without attacking the enclave from scratch.
The payload contains the logic for interacting with the OS and the enclave. To
achieve persistence, we design a generic architecture that fits the SGX realm
(Section 5.4). Moreover, since the payload can potentially leave the enclave, we
designed a generic context-switch mechanism that enables the payload to keep
control over the enclave (Section 5.5).

5.2 Getting a Secure Memory Location

We employ a trusted thread as backdoor location because it allows us to abuse
the design error described in Section 4. If an enclave does not have any avail-
able trusted thread, SnakeGX can still work by stealing one of the available
threads. In this case, the target application may notice some degradation of the
performances. However, the system does not raise any exception because it is
not possible to determinate the real cause. In this way, we can take control of an
enclave trusted thread without affecting enclave functionality. These properties
are SGX specific and were not considered in previous code-reuse works.

Un-releasing a Trusted Thread. This technique is based on a misbehaviour
of the thread binding mechanisms in the uRts library. Once a secure function
is invoked through the Intel SGX SDK, the uRts searches a free trusted thread
and marks it as busy. Then, the trusted thread is released when the secure
function ends. However, an attacker can exploit a secure function and leaves the
enclave skipping the releasing phase in the uRts. As a result, the trusted thread
remains busy and it will never be assigned to future executions, in this way it is
stolen. The strategy of this technique is composed by two phases: (i) invoking
and exploiting a secure function, then (ii) exiting from the enclave (e.g., by
using EEXIT) and skipping the releasing of the trusted thread. This approach
requires the enclave has at least two trusted threads, otherwise the application
might realize that the enclave is unavailable. We use this approach for our PoC.

Making a New Thread. SGX 2.0 and recent versions of the Intel SGX SDK
allow creating trusted threads at run-time. Therefore, an attacker may force the
enclave to create a new trusted thread without tampering with the pool. How-
ever, this approach should be used wisely, otherwise unexpected trusted threads
may attract the analyst attention, thus affecting the stealthiness of SnakeGX.

5.3 Set a Payload Trigger

We design our trigger on top of the Intel SGX SDK flaw highlighted in Section 4.
We assume that an attacker has already gained control of an enclave by means

SnakeGX: a sneaky attack against SGX Enclaves 13

of a code-reuse attack. Moreover, either the payload and the trigger must be
tuned for the trusted thread under attack.

To install the trigger, the adversary has to mimic an OCALL such that the next
ORET will activate the backdoor (i.e., a chain) instead of resuming the execution
of a secure function. To achieve this goal, the adversary has to perform three
main operations: (i) set a fake ocall_context on the stack that satisfies the
formal requirements as described in Section 4.2; (ii) call the function save_-
xregs() (which is contained in tRts) to save extended process features, the
function should take as an argument the xsave_buff location of the fake ocall -
context previously copied; (iii) call the function update_ocall lastsp() (which
is contained in tRts) by passing the pointer to the fake ocall_context. This
function will set TLS last_sp to the fake ocall_context, thus simulating an
OCALL.

This setting allows us to resume the payload execution by performing an
ORET on the attacked trusted thread. More precisely, asm_oret () will restore
the context previously installed and it will activate the first gadget. By default,
ocall_context does not perform a pivot (i.e., it does not set the rsp register).
To bypass this issue, we used a pivot gadget that is contained in asm_oret ()
function itself: mov rsp, rbp; pop rbp; ret. This gadget is present in any
SDK version released so far, so it is a generic technique for SGX backdoors. We
observed the same gadget also in Windows tRts. Therefore, the first instruction
triggered by the fake ocall_context is a pivot gadget. Then, we set the rbp to
point to a fake stack inside the stolen thread. In this way, the ORET always pivots
to the fake stack that contains the actual payload. Notice that this mechanism
just pivots to the fake address indicated by the fake ocall_context (i.e., rbp).
As such, an attacker only needs one fake ocall_context that pivots to a fixed
location. Then, she can just copy different fake stacks to the same location to
activate different payloads.

5.4 Backdoor Architecture

Figure 5 shows the payload architecture that we adopted for SnakeGX. This
solution allows us to achieve payload persistence in an SGX enclave by only
using the stack address space. By default, the Intel SGX SDK sets the stack size
at 40KB, therefore, we design SnakeGX to fit this size. For the sake of simplicity,
we describe the switching mechanism in Section 5.5.

As underlined in [46], classic code-reuse attacks (e.g., ROP) are designed
to be one-shot. After executing a chain, it may be destroyed due to gadgets
side effects. Therefore, we need a location to keep a backup of the structures
used. According to this consideration, we split the stack address memory in four
sections:

Fake Frame. SnakeGX requires a dedicated location for installing an
ocall _context. This structure is used to either perform the payload trigger
and the context-switch (see Section 4). These features are crucial to implement
a persistent backdoor in the SGX realm since classic techniques cannot be used.

14 F. Toffalini et al.

growing direction

FakeFrame — ==~ fake ocall_context :| l

|: TLS Virtual address

Buffer

Workspace —|

c
o o e
fake ocall_context

Backup —|

Fig.5: Trusted thread stack after SnakeGX installation. The memory is split
in four areas: FakeFrame, buffer, workspace, and backup. Moreover, the stack
contains copies of B., P., and R..

Buffer. This area contains temporary variables that are used by payloads.
For instance, our PoC stores the previous data exfiltrated (see Section 6).

Workspace. The fake frame previously installed is tuned to pivot the ex-
ecution to this location. Generally speaking, any payload is coped here before
being executed.

Backup. This location contains a copy of all the structures needed by
SnakeGX to work properly. After the SnakeGX installation, this location should
not be overwritten.

Since the chains used may be destroyed after payload execution, we need
a mechanism that brings SnakeGX to the initial state after the payload has
been executed. More precisely, it has to make the payload available for future
invocations. To achieve this goal, we use three chains: Boot Chain (B..), Payload
Chain (P.), and Reset Chain (R.). Each of them is formed by a fake stack that
is maintained in the backup zone and moved in the workspace on demand:

Boot Chain (B.). This is the first chain that is triggered by the hook, its
duties are: (i) copy P. and R, into the workspace, and (ii) pivot to P.. This
chain is usually quite short.

Payload Chain (P.). This contains the actual payload and is strictly en-
clave dependent. When the payload ends, it just pivots to R..

Reset Chain (R.). This chain resets the payload inside the enclave and
makes it ready for the next calls without the need of the installation phase. This
is achieved with the following operations: (i) copy B. into workspace, (ii) copy
the ocall_context in the fake frame, (iii) set TLS to point to ocall_context.

After the execution of R., SnakeGX can be triggered again by a new ORET.
The loop boot-payload-reset chain, along the architecture shown in Figure 5, is a
simple framework that can be used by the adversaries to design their customized
payload for SnakeGX.

SnakeGX: a sneaky attack against SGX Enclaves 15

5.5 Context-Switch

To allow SnakeGX to interact with the host OS, while maintaining the enclave
control, we need to perform three operations: (S1) temporarily copy part of
the payload outside, (S2) leave the enclave, and (S3) resume the execution in-
side the enclave. The first two operations are relatively simple: the Intel SGX
SDK already provides standard routines (e.g., memcpy) to move data outside
the enclave. Moreover, it is possible to pivoting outside the enclave by abusing
the EEXIT opcode (Section 2). On the contrary, resuming the enclave execution
requires SnakeGX to invoke an EENTER opcode. However, it is not possible to
arbitrarily jump inside an enclave (i.e., the entry point is fixed). Therefore, we
abuse again of the Intel SGX SDK deign error described in Section 4.

To perform the context-switch, we split the payload in three chains, called
outside-chain (O.), payload-one (P1), and payload-two (P2). O, is the part of
the payload copied in the untrusted memory, while P; and P5 remain inside the
enclave. During the context-switch, we execute P1, O., and P, consequently.
More precisely, once P; requires to interact with the host, it performs (S1) to
prepare the O, activation, installs a fake frame (Section 5.4), and prepares Ps
in the workspace. At this point, P; can perform (S2): leave the enclave and
pivot to O.. When the operations in untrusted memory are terminated, O. only
needs to run an ORET that will activate P2 (S3). Finally, P2 can clean the traces
left by O, and continue the backdoor execution. It is possible to perform many
context-switch by tuning the payload accordingly.

6 Experimental Evaluation

We evaluate the real impact of our framework against StealthDB [45], an open-
source project that leverages on the SGX technology. We opted for StealthDB
because it is a generic representation of our scenario, as we describe in Sec-
tion 6.1. We split our evaluation in three parts: (i) a technical discussion of our
use-case (Section 6.2), (ii) a measurement of the traces left (Section 6.3), and
(iii) a discussion about the countermeasures (Section 6.4).

6.1 StealthDB

StealthDB [45] is a plugin for PostgreSQL [20] that uses Intel SGX enclaves to im-
plement an encrypted database. This project is the ideal use-case for SnakeGX:
StealthDB lifetime is bounded to PostgreSQL, thus we can rely on its enclaves
as a secure save point for storing the payload and launching the attacks.
StealthDB uses a single SGX enclave to handle encrypted fields and opera-
tions that are performed inside the enclave itself. In this way, the database can
securely save encrypted fields on disk, while the plain values are handled only in-
side the enclave. The encryption algorithm is AES-CTR with keys 128 bits long.
These keys are sealed on the disk through the standard SGX features. A user
can define multiple keys that are loaded on-demand inside the enclave, however,

16 F. Toffalini et al.

the StealthDB enclave maintains in memory only a single key at a time. In this
scenario, one-shot state-of-the-art techniques require multiple interactions to ob-
tain all the keys. This approach leaves more copies of the payload in the memory,
thus increasing the risk of being detected. Even if an adversary manages to ob-
tain all the sealed keys, she still has to perform new attacks whenever a new key
is generated. SnakeGX is able to understand when a new key is loaded and per-
forms the exfiltration steps accordingly. In this way, the attacker transparently
hides and activates complex logic that resides inside a trusted enclave.

6.2 TUse-Case Discussion

In this section, we discuss the properties of our PoC payload and some implemen-
tation details. For more technical details about our payload see Appendix A. Our
setup is composed by an application that loads StealthDB enclave and performs
the attacks. We extracted the gadgets for the chains by running ROPGadget [1]
on the compiled enclave. As our threat model details in Section 3, we introduced
a memory corruption vulnerability in StealthDB to simplify the payload deliv-
ery. We developed our data-only malware for SGX in a host OS running Linux
with kernel 4.15.0 and Intel SGX SDK version 2.9.

We composed our PoC of three steps. First, the application starts and loads
the enclave. Second, we exploit the enclave vulnerability and implant the pay-
load. Third, we alternatively invoke normal secure functions and the backdoor.
This shows that SnakeGX does not alter the normal enclave functionality. Once
the backdoor is triggered, SnakeGX exfiltrates the keys only when the condition
is satisfied. Without using SnakeGX, the adversary has to perform many attacks
to achieve the same goal, which potentially leaves traces for an analyst. More-
over, SnakeGX avoids the burden of crafting new payloads at each exfiltration.

The Payload. Our payload shows three important features: (i) persistence,
(ii) internal state, and (iii) context-switch. More precisely, the payload exfiltrates
a key if and only if it changes. This is crucial in our threat model (Section 3),
which assumes a non-compromised host, thus the attacker has to reduce un-
useful actions. In fact, all the payload structures are kept inside the enclave, and
an adversary only needs to trigger an ORET against the compromised thread.
Once activated, the payload is able to self-check its status, and in case, leak the
key. The payload is composed by three chains:

— P is the first payload to be activated. It checks if the key changed, and in
case activates the exfiltration.

— O is the outside-chain that actually exfiltrates the key. It is temporary copied
in the untrusted memory by Pj.

— P> is the second payload that is triggered by O after the exfiltration. The
purpose of Py is to wipe out all the temporary structures previously copied
in the untrusted memory, i.e., O and the key.

From an external analyzer, all the structures (i.e., Py, Py, and O) are always
contained in the enclave when the payload is not activated. The only chain

SnakeGX: a sneaky attack against SGX Enclaves 17

temporary copied outside is O, but Ps cleans its traces. Moreover, to activate
the payload, the attacker only needs to trigger an ORET instead of preparing
complex code-reuse attacks. In Section 6.3, we measure and compare the traces
of SnakeGX w.r.t. the state-of-the-art attacks.

Chains Composition. Our payload maintains an internal state and in-
teracts with the host. To handle the state, the payload is able to perform a
conditional pivoting by comparing the current key and a copy of the last key ex-
filtrated [40]. The conditional chain is implemented in P;. Once the key changes,
P1 will pivot to a chain that performs the exfiltration. Otherwise, the payload
will pivot to another chain that simply resumes the normal enclave behavior.
We describe the gadgets used to perform conditional pivoting in Appendix B.
The interaction with the OS, instead, requires two types of chains: some that
run inside the enclave (i.e., P1 and P3), and others that run outside (i.e., O).
Table 2 shows some statistics about chains composition. The chains inside the
enclave are entirely composed by gadgets from the tRts. More precisely, P; and
P; invokes 27 and 13 functions such as memcpy (), and update_ocall lastsp(),
respectively. In terms of memory, P; and P2 occupy 2816 and 1232 byes, respec-
tively. The chain O, instead, is composed by classic gadgets from libc. More
precisely, O is composed by 20 small standard gadgets. The internal ecosystem
of tRts, and the libc in Linux systems, provide enough gadgets and functions
to create useful payloads. We describe the gadgets used for these chains in Ap-
pendix C.

Chain # fnc/sys # gadgets size [B]

Py 27 23 2816
Py 13 7 1232
O 4 20 312
sum 44 50 4360

Table 2: Statistics of the gadgets used for the payload.

6.3 Trace Measurements

We analyze our PoC and measure the advantages SnakeGX introduces. We recall
that our threat model assumes a weak adversary which has no control of the
host, and therefore, she has to improve her stealthiness. To perform the same
goal of our PoC by using state-of-the-art one-shot attacks [12], an attacker has
to leave in the untrusted memory around 4KB of structures (i.e., P;, Py and
O). These traces can be found by using previous results already shown in the
literature [42, 32, 25, 22]. Moreover, their identification results even simpler since
they use peculiar structures such as sgx_exception_info_t (see Appendix A).
On the contrary, SnakeGX requires only one ORET to trigger the payload. In

18 F. Toffalini et al.

particular, our PoC implements an ORET by using only 4 gadgets and leaving
a negligible footprint of 56 byes in memory. As a result, the trigger used by
SnakeGX is able to activate payloads arbitrary complex by leaving a minimal
footprint.

6.4 Countermeasures

SnakeGX poses new challenges for forensic investigators and backdoor analysts
as well as for experienced reverse engineers. The current state-of-the-art tools
cannot detect and dissect this new threat. It is necessary to develop new tools
and techniques for the detection and possibly the prevention of threats affecting
SGX and similar technologies. Here, we discuss some possible directions for the
detection that can be used to observe the presence of SnakeGX in a system.
Moreover, we analyze how the current state-of-the-art defenses can mitigate our
attack and which future research lines can be taken. This is not a comprehensive
study and we leave this part for future work. We hope this research paves the
way for new works in the malware analysis field.

Memory Forensic Analysis. SnakeGX is an infector of legitimate enclaves
and is by definition stealthier. This means that any form of memory forensics is
no more possible. The memory of the enclave cannot be inspected. As explained
in Section 2, SGX makes impossible to read memory pages that belong to an
enclave. Any attempts at reading such pages will result in a fake value 0xFF.
Another possible approach is to use new attacks based on microcode flaws [14] or
fault injections [29] to dump an enclave content. Alternatively, it is possible to use
side-channel attacks to infer specific enclave manipulations, as discussed in [31].
It should also be pointed out that it is still possible to retrieve uRts information.
For instance, we could compare the number of trusted threads in uRts and the
number of trusted threads in the ELRANGE structure. An inconsistency will bring
to clues regarding the state of that enclave.

Sandboxes. Recently, researchers proposed sandboxes to reduce the inter-
action of a malware-enclave and the system [48]. These solutions are designed
for systems that cannot assess the origin of an enclave beforehand, thus they
do not trust it. These defenses can, in principle, reduce the attack surface of
SnakeGX. However, since we target only systems that host known and trusted
enclaves, we do not expect sandboxes in place. In the worst case, we can still
detect the presence of a sandbox by probing the process (i.e., through a syscall)
and interrupt the attack.

Syscalls Trace. Even though the payload is hidden from reading, it is still
possible to analyze the syscall interaction of the outside-chains. This approach
has been extensively studied and it is quite common in the field of malware anal-
ysis. Researchers may design a tracer and superficially focus on the interaction
with the enclave. For instance, this tool may spot that SnakeGX generated a file
operation that did not appear in previous interactions. In this way, analysts can
infer the behaviour of the code inside the enclave.

Control Flow Integrity Checks. Control Flow Integrity checks (CFI) are
strong weapons already used in standard programs to mitigate code-reuse at-

SnakeGX: a sneaky attack against SGX Enclaves 19

tacks. Such mechanisms rely on different strategies to force a program to execute
only valid paths at run-time. In the current enclave implementation, the system
relies on classic stack canary to avoid buffer overflow. However, Lee et al. [27]
discussed a technique to bypass such protection. Other non-standard systems,
such as SGX Shield [39], implement a custom CFI to mitigate these issues. How-
ever, Biondo et al. [12] managed to bypass their protection too. So far, there
are not effective defenses against code-reuse attacks in the context of enclaves.
This approach might raise the bar for attackers who would attempt to deploy
SnakeGX or to perform code-reuse attacks in general.

Detecting Fake Structures. SnakeGX exploits the possibility to craft fake
structures that are used in critical tRts functions, i.e., ocall_context. We
deeply analyzed this issues and proposed mitigation strategies in Section 4.4.

7 Discussion

Here, we discuss various aspects of SnakeGX generalization.

7.1 SnakeGX Portability

The current implementation of SnakeGX is based on a specific version of the
Intel SGX SDK, for a specific application and operating system. In this section,
we study the portability of our PoC and show the approach is generic and can
be easily adapted to other SDKs and OSs. Recently, new SGX frameworks were
released on the market, or research prototypes, to provide an abstraction layer
that simplifies the enclave development. In particular, projects such as Open
Enclave [28], Google Asylo [21], and SGX Shield [11] use the standard Intel
SGX SDK to perform host interaction (i.e., 0CALL/ORET), thus inheriting the
same limitations described in Section 4. From our point of view, we can implant
SnakeGX in any enclave developed with these frameworks if they follow our
threat model assumptions (Section 3). We also analyzed the Intel SGX SDK for
Windows, in which we found and tested the same flaw described in our work.
Finally, the standard tRts libraries contain all the gadgets used in our PoC. In
general, SnakeGX can potentially affect enclaves developed on different SDKs
as long as: (i) they are abstraction layers of the Intel SGX SDK, or (ii) they
use a host interaction that relies on unprotected structures like ocall_context.
In this paper, we proposed an instance of SnakeGX targeting StealthDB on
Linux. However, the idea is generic and the persistence, stateful, and context-
switch properties can be found and achieved also in other OSs and popular SDKs
based on the Intel one.

7.2 Persistence Offline

SnakeGX maintains persistence in memory as long as the host enclave is loaded.
This is similar to what Vogl et al. [46] have shown with “Chuck”. In their proof
of concept they achieved persistence on the running system. Their ROP rootkit

20 F. Toffalini et al.

did not survive after reboot. In our scenario, SnakeGX may achieve a more com-
plete persistence by exploiting the sealing mechanism. In this case, the malicious
payload would not be affected if the enclave is restarted. This sealing mechanism
is a common SGX practice. It saves the enclave state (i.e., its data) before the
enclave shuts down. If the victim enclave has a loophole in the restoring phase,
this could be exploited to inject SnakeGX again after a reboot. However, this
is strictly enclave-dependent and therefore we did not include in our discussion
and it is left for the future.

7.3 SnakeGX 32bit

In this paper, we designed our PoC for 64bit architectures. However, Intel SGX
supports also 32bit code to run in enclaves. From our point of view, the main
difference between 32bit and 64bit is the calling convention. Therefore, the tech-
niques we discussed and used for SnakeGX are still valid and can be easily ported
to 32bit applications.

8 Related Work

SnakeGX combines properties from different research areas. Here, we discuss the
difference with classic malware-enclaves works (Section 8.1), memory corruption
errors (Section 8.2) and data-only- malware (Section 8.3).

8.1 Enclaves as Malware

SnakeGX implants a malware (i.e., a backdoor) in a legit enclave. Researchers
already investigated SGX isolation properties as malware container in previous
works [4,5, 19, 33, 38, 36, 37]. However, all these approaches require the introduc-
tion of a new enclave in the system. The main issue of this approach is that an
unexpected enclave can be detected and, consequently, attract analysts’ atten-
tions. On the contrary, SnakeGX hides its presence in a running and legitimate
enclave thus proposing a new approach for malware-enclave.

Nguyen et al. [30] proposed EnGarde, which is an enclave loader that checks
whether the enclave matches a set of predefined policies in order to avoid loading
potentially dangerous code. In this way, it is no more possible to introduce a new
malicious enclave in the system. However, once an enclave is loaded, it follows
standard SGX specification and SnakeGX can take control of it if its assumptions
are satisfied.

To mitigate malware-enclaves, Weiser et at. introduced SGXJail [48], which
is the first sandbox for untrusted enclaves. In their scenario, the authors assume
that a malicious enclave is developed on purpose and then deployed in a ma-
chine without being inspected (e.g., the enclave is shipped as encrypted). Once
installed, the malicious enclave can launch several attacks, e.g., leak informa-
tion, compromise the host. SGXJail restricts the enclave interaction by mean of

SnakeGX: a sneaky attack against SGX Enclaves 21

a sandboxed process with a very narrowed number of syscalls enabled. In prin-
ciple, the design of SGXJail reduces the attack surface of SnakeGX. However,
since we attack only trusted enclaves (i.e., enclaves that were verified before-
hand), we consider reasonable not to assume sandboxes in place. In addition,
we can implement a sandbox detection to avoid the infection, i.e., we can probe
the host process by running specific syscalls during the installation phase and,
in case, interrupt the attack.

8.2 Memory Corruption

SGX applications are not immune to flaws that may lead to memory corruption
attacks. In this scenario, the attacker can use classic exploitation techniques.
However, it is important to underline that the SGX isolation by default compli-
cates the exploitation phase. In this hostile environment, Lee et al. [27] developed
Dark-ROP, a technique to gain information about the enclave to build a success-
ful attack. The work of Lee et al. [27] forces a victim enclave to crash and restart
many times to look up the gadgets and build the ROP-chains. Their strategy
is reasonable since they assume the entire host as compromised, and therefore,
the adversary has no need to hide its presence. An optimized strategy has been
proposed by Biondo et al. [12], in which they assume a non-compromised host.
The goal of Biondo is to gain control of the enclave in a single iteration. However,
as we discussed in Section 6.3, the strategy of Biondo leaves a certain amount of
traces that can be detected. SnakeGX, instead, improves its stealthiness by per-
manently injecting a backdoor in the enclave. As a result, SnakeGX just needs an
ORET to activate payloads arbitrary complex. This increases the stealthiness of
our attack in case of a non-compromised host. To achieve our goal, we overcame
new challenges, such as persistence in an enclave by solely using code-reuse at-
tacks and expanding the data-only malware model by proposing new techniques.
To the best of our knowledge, these novel challenges have not been discussed and
solved for SGX technology before.

Other works in the literature investigated memory integrity mechanisms
for SGX enclaves. Dmitrii et al. implemented SGXBounds [26]. This tool in-
struments enclave code to mitigate memory corruption errors. Unfortunately,
SGXBounds has been developed only for SCONE [10], which is a project that
enforces Docker containers by using small enclaves. Schuster et al. describe
VC3 [35], which is a Map-Reduce framework based on SGX. Since VC3 takes
custom software as an input, the authors developed a set of static-code checks to
limit memory corruption issues. To reduce memory corruptions flaws, Wang et
al. [47] described a Rust environment for SGX. However, as underlined by the au-
thors, even with a framework written in a safe programming language we cannot
solve all the memory corruption issues. Shih et al. [41] proposed T-SGX, which
reduces the amount of information gathered from enclave crashes and limited
the impact of attacks like Dark-ROP. SnakeGX, however, is a generic frame-
work that can rely on any code-reuse attack for SGX enclaves. For instance, Van
Bulck et al. [44] conducted a systematic study of the memory errors in the SGX
run-time libraries and they found several flaws in different projects. Cloosters et

22 F. Toffalini et al.

al. [17] proposed TeeRex, an automatic analyzer for memory corruption errors
in enclaves. All these defensive works show a limitation in the SGX design. This
technology shields all the threats from the outside but has almost no protections
to harden a flawed application running inside the enclave. Unfortunately, all the
proposed defensive solutions are not ready for a real production deployment and
do not entirely solve the problem. In many cases they can be bypassed and, at
the moment, there are code-reuse attacks [12,27] able to disarm standard and
additional SGX memory-integrity mechanisms.

8.3 Data-only Malware

Data-only malware is any malicious payload that does not introduce or change
any existing code into the system [46]. Data-only malware are based on code-
reuse techniques such as ROP and JOP, and can hijack the control flow of the
target application. This is possible by exploiting a vulnerability and crafting a
specific payload. The payload implementing the malicious functionality is usually
“one-shot”. The first data-only malware proposed by Hund et al. [24] and Chen
et al. [16] managed to bypass state-of-the-art protections and they were based on
ROP and JOP techniques, respectively. However, both works lack of persistence.
This means that if the attacker wants to repeat the same action, she needs to
exploit again the same vulnerability. The concept of persistence for data-only
malware and more in general for code-reuse attacks has been discussed and
solved by Vogl et al. [46] for the x86 architecture. They proposed “Chuck” the
first persistent data-only (ROP) rootkit. However, the solutions used in Chuck
cannot be transparently adapted to the SGX realm, and therefore, we expanded
their work and introduced novel techniques to have a data-only malware for
SGX. Our contributions are described in Section 5.

9 Conclusion

Recent code-reuse attacks against SGX enclaves can exfiltrate secrets without
depending on compromised OSs. This scenario opens new possibilities in which
the OS can inspect the memory and identify the intrusion as well. Furthermore,
analyzing the state-of-the-art of code-reuse techniques for SGX, we realized that
current memory-forensic results can find traces of the attack.

With this in mind, we proposed a new stealthy code-reuse attack that min-
imizes its presence against a healthy OS. Our intuition is to implant a back-
door inside the victim enclave. Consequently, an adversary just needs a minimal
trigger without repeating the attack from scratch. We implemented our idea in
SnakeGX, which is a framework to install backdoors in SGX enclaves that behave
like additional secure functions. SnakeGX extends and adapts to the strict SGX
environment the concepts of data-only malware [46]. In particular, SnakeGX has
a reliable context-switch mechanism based on a newly discovered design error of
the Intel Software Development Kit for SGX, which we reported to Intel.

SnakeGX: a sneaky attack against SGX Enclaves

We evaluated our findings against StealthDB, an open-source project that
implements an encrypted database. Our experiments show that we can reduce
the memory footprint of the payload while preserving the enclave functionality.

Our proof-of-concept is publicly available for the community?.

Acknowledgments. We would thank Lorenzo Cavallaro and Fabio Pierazzi
for the fruitful discussions and insights. We would also thank the anonymous

reviewers for their valuable comments.

References

1. Ropgadget - gadgets finder and auto-roper. https://github.com/

JonathanSalwan/ROPgadget (2011), last access March 2020

2. Intel® software guard extensions (intel®sgx) - developer guide. https:

//download.O1.org/intel-sgx/linux-2.1.3/docs/Intel_SGX_Developer\
_Guide.pdf (2013), last access June 2020

3. Intel® software guard extensions programming reference. https://software.
intel.com/sites/default/files/managed/48/88/329298-002.pdf (2013), last

access June 2020

4. Thoughts on intel’s upcoming software guard extensions
(part 1). http://theinvisiblethings.blogspot.com/2013/08/
thoughts-on-intels-upcoming-software.html (2013), last access Novem-
ber 2018

5. Thoughts on intel’s upcoming software guard extensions
(part 2). http://theinvisiblethings.blogspot.com/2013/09/

thoughts-on-intels-upcoming-software.html (2013), last access Novem-

ber 2018

6. Technology preview: Private contact discovery for signal. https://signal.org/

blog/private-contact-discovery/ (2017), last access November 2018

7. Intel architecture instruction set extensions programming reference. https:

//software.intel.com/sites/default/files/managed/b4/3a/319433-024.

pdf?_ga=1.118002441.1853754838.1418826886 (2018), last access November

2018

8. Sgx-tor. https://github.com/kaist-ina/SGX-Tor (2018), last access November

2018

9. Awesome Sgx open source projects. https://github.com/Maxul/

Awesome-SGX-0pen-Source (2019), last access June 2020

10. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C.,
Lind, J., Muthukumaran, D., O’Keeffe, D., Stillwell, M.L., Goltzsche, D., Ey-
ers, D., Kapitza, R., Pietzuch, P., Fetzer, C.: SCONE: Secure linux con-
tainers with intel SGX. In: 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). pp. 689-703. USENIX Asso-
ciation, Savannah, GA (2016), https://www.usenix.org/conference/osdil6/

technical-sessions/presentation/arnautov

11. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted

cloud with haven. ACM Transactions on Computer Systems (TOCS) 33(3),
(2015)

* SnakeGX’s source code is available at https://github.com/tregua87/snakegx.

24

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

F. Toffalini et al.

Biondo, A., Conti, M., Davi, L., Frassetto, T., Sadeghi, A.R.: The guard’s dilemma:
Efficient code-reuse attacks against intel sgx. In: Proceedings of 27th USENIX
Security Symposium (2018)

Bletsch, T.: Code-reuse Attacks: New Frontiers and Defenses. Ph.D. thesis (2011),
aAl3463747

Bulck, J.V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting
the keys to the intel SGX kingdom with transient out-of-order execution. In:
27th USENIX Security Symposium (USENIX Security 18). p. 991-1008. USENIX
Association, Baltimore, MD (Aug 2018), https://www.usenix.org/conference/
usenixsecurityl8/presentation/bulck

Checkoway, S., Shacham, H.: Tago attacks: Why the system call api is a bad
untrusted rpc interface. SIGARCH Comput. Archit. News 41(1), 253-264 (Mar
2013). https://doi.org/10.1145/2490301.2451145, http://doi.acm.org/10.1145/
2490301.2451145

Chen, P., Xing, X., Mao, B., Xie, L.: Return-oriented rootkit without returns
(on the x86). In: International Conference on Information and Communications
Security. pp. 340-354. Springer (2010)

Cloosters, T., Rodler, M., Davi, L.: Teerex: Discovery and exploitation of memory
corruption vulnerabilities in SGX enclaves. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Boston, MA (Aug 2020), https:
//www.usenix.org/conference/usenixsecurity20/presentation/cloosters
Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptology ePrint Archive
2016, 86 (2016)

Davenport, S., Ford, R.: Sgx: the good, the bad and the downright ugly. Virus
Bulletin p. 14 (2014)

Drake, J.D., Worsley, J.C.: Practical PostgreSQL. ” O’Reilly Media, Inc.” (2002)
Google: Asylo. https://github.com/google/asylo (2018), last access March 2020
Graziano, M., Balzarotti, D., Zidouemba, A.: Ropmemu: A framework for the anal-
ysis of complex code-reuse attacks. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. pp. 47-58. ASIA CCS
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2897845.2897894,
http://doi.acm.org/10.1145/2897845.2897894

Hahnel, M., Cui, W., Peinado, M.: High-resolution side channels for untrusted
operating systems. In: 2017 USENIX Annual Technical Conference (USENIX ATC
17). pp. 299-312. USENIX Association, Santa Clara, CA (2017), https://www.
usenix.org/conference/atcl7/technical-sessions/presentation/hahnel
Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In: USENIX Security Symposium. pp. 383—-398
(2009)

Kittel, T., Vogl, S., Kirsch, J., Eckert, C.: Counteracting data-only malware with
code pointer examination. In: International Symposium on Recent Advances in
Intrusion Detection. pp. 177-197. Springer (2015)

Kuvaiskii, D., Oleksenko, O., Arnautov, S., Trach, B., Bhatotia, P., Felber, P.,
Fetzer, C.: Sgxbounds: Memory safety for shielded execution. In: Proceedings of
the Twelfth European Conference on Computer Systems. pp. 205-221. EuroSys
17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3064176.3064192,
http://doi.acm.org/10.1145/3064176.3064192

Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M.,
Kang, B.B.: Hacking in darkness: Return-oriented programming against secure
enclaves. In: USENIX Security. pp. 523-539 (2017)

28.

29.

30.

31.

32.

33.
34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

SnakeGX: a sneaky attack against SGX Enclaves 25

Microsoft: Open enclave sdk. https://openenclave.io/sdk/ (2019), last access
March 2020

Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: Software-based fault injection attacks against intel sgx. In: Proceed-
ings of the 41st IEEE Symposium on Security and Privacy (S&P’20) (2020)
Nguyen, H., Ganapathy, V.: Engarde: Mutually-trusted inspection of sgx enclaves.
In: 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). pp. 2458-2465 (June 2017). https://doi.org/10.1109/ICDCS.2017.35
Oleksenko, O., Trach, B., Krahn, R., Silberstein, M., Fetzer, C.: Varys: Pro-
tecting SGX enclaves from practical side-channel attacks. In: 2018 USENIX
Annual Technical Conference (USENIX ATC 18). pp. 227-240. USENIX As-
sociation, Boston, MA (2018), https://www.usenix.org/conference/atc18/
presentation/oleksenko

Polychronakis, M., Keromytis, A.D.: Rop payload detection using speculative code
execution. In: 2011 6th International Conference on Malicious and Unwanted Soft-
ware. pp. 58-65. IEEE (2011)

van Prooijen, J.: The design of malware on modern hardware. Tech. rep. (2016)
Rozas, C.: Intel® software guard extensions (intel® sgx) (2013)

Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: Vc3: Trustworthy data analytics in the cloud using sgx. In:
Security and Privacy (SP), 2015 IEEE Symposium on. pp. 38-54. IEEE (2015)
Schwarz, M., Lipp, M.: When good turns evil: Using intel sgx to stealthily steal
bitcoins. Black Hat Asia (2018)

Schwarz, M., Weiser, S., Gruss, D.: Practical enclave malware with intel SGX.
CoRR abs/1902.03256 (2019), http://arxiv.org/abs/1902.03256

Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard ex-
tension: Using sgx to conceal cache attacks. In: International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. pp. 3—24. Springer
(2017)

Seo, J., Lee, B., Kim, S.M., Shih, M.W., Shin, I., Han, D., Kim, T.: Sgx-shield:
Enabling address space layout randomization for sgx programs. In: NDSS (2017)
Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security. pp. 552-561. CCS 07, ACM, New York, NY,
USA (2007). https://doi.org/10.1145/1315245.1315313, http://doi.acm.org/10.
1145/1315245.1315313

Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-sgx: Eradicating controlled-channel
attacks against enclave programs. In: Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (2017)

Stancill, B., Snow, K.Z., Otterness, N., Monrose, F., Davi, L., Sadeghi, A.R.: Check
my profile: Leveraging static analysis for fast and accurate detection of rop gadgets.
In: International Workshop on Recent Advances in Intrusion Detection. pp. 62—81.
Springer (2013)

che Tsai, C., Porter, D.E., Vij, M.: Graphene-sgx: A practical library OS for
unmodified applications on SGX. In: 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17). pp. 645-658. USENIX Association, Santa Clara,
CA (2017), https://www.usenix.org/conference/atc17/technical-sessions/
presentation/tsai

Van Bulck, J., Oswald, D., Marin, E., Aldoseri, A., Garcia, F.D., Piessens, F.: A
tale of two worlds: Assessing the vulnerability of enclave shielding runtimes. In:

26 F. Toffalini et al.

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 1741-1758. ACM (2019)

45. Vinayagamurthy, D., Gribov, A., Gorbunov, S.: Stealthdb: a scalable encrypted
database with full sql query support. Proceedings on Privacy Enhancing Technolo-
gies 2019(3) (2019)

46. Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: Function
hooks without code. In: NDSS (2014)

47. Wang, H., Wang, P., Ding, Y., Sun, M., Jing, Y., Duan, R., Li, L., Zhang, Y.,
Wei, T., Lin, Z.: Towards memory safe enclave programming with rust-sgx. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 2333-2350. ACM (2019)

48. Weiser, S., Mayr, L., Schwarz, M., Gruss, D.: Sgxjail: Defeating enclave mal-
ware via confinement. In: 22nd International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID 2019). pp. 353-366. USENIX Association,
Chaoyang District, Beijing (Sep 2019), https://www.usenix.org/conference/
raid2019/presentation/weiser

49. yerzhan7: Sgx_sqlite. https://github.com/yerzhan7/SGX_SQLite, last access Jan-
uary 2019

A Code-Reuse Technique

To show the feasibility of SnakeGX, we choose for our proof-of-concept the tech-
nique described by Biondo et al. [12]. This means that SnakeGX uses ROP.
However, as stated in Section 3, SnakeGX does not rely on a specific technique,
but it does require one to control its behavior. Moreover, we adapted their ap-
proach to work on the Intel SGX SDK newer versions.

In the original approach, the authors exploited asm_oret () and continue_-
execution() functions. More precisely, they crafted a set of fake frame in order
to create a loop between these functions. In the x64 architecture, the first four
function parameters are passed by registers. Therefore, the authors used asm_-
oret() for setting continue_execution() registers pointing to a controlled
structure. However, as also Biondo underlined, it is more complicated to use
asm_oret () for SDK 2.0. This is why in our approach we substituted asm_oret ()
with a glue gadget. This might be any gadget that sets the input register for the
continue_execution() function. Since we developed our proof-of-concept for
Linux 64bit, continue_execution() expects the first argument (i.e., a sgx_-
exception_info t address) in the rdi register. This is achievable by using a
classic pop rdi gadget. Windows, instead, follows a different calling convention
and continue_execution() expects an ocall_context address shifted by 8 byes
in the rcx register. Therefore we used a pop rcx as a glue gadget. In our eval-
uation, we found pop rdi and pop rcx gadgets in the Intel SGX SDK version
for Linux and Windows, respectively.

Figure 6 describes our code-reuse technique. The attacker crafts a fake stack
that can reside inside or outside the enclave, we used both approaches. The
fake stack is composed by frames, one of which contains in order: (i) a glue
gadget address, (ii) a fake sgx_exception_info_t address, (iii) the continue_-
execution() address. Once the first glue gadget is triggered, it will set rdi (or

SnakeGX: a sneaky attack against SGX Enclaves 27

[~ glue_gadget:

pop Srdi;
ret;

FakeStack **[*.

sgx_exception1

memepy:

t .

rdi; :

rsi; ret;

rdx;

rip;
Frame1 &sgx_exceptiont rop:
&continue_exception }
sgx_exception2: jadget2:
(- aglue_gadget 9x_excep! J—' gadg
ret;
—~ &glue_gadget j
Frame3 ssgx_exceptions — |

Frame2 &sgx_exception2
sgx_exception3: gadget3;

{ i

&continue_exception tip; ret;

rsp;

<
(H &glue_gadget

rip;
rsp;

&continue_exception

H

)

L &glue_gadget

Fig. 6: Chain used in the proof-of-concept of SnakeGX.

rcx in Windows) register pointing to the fake sgx_exception_info_t structure.
Then, the continue_execution() will set registers according to sgx_excep-
tion_info_t and it will also pivot to the actual gadget. Since continue_exe-
cution() allows us to control all general registers, we can easily invoke another
function instead of a simple gadget (e.g., memcpy in Frame 1). Finally, the gad-
get will return at the beginning of the next frame. At this point, the CPU will
trigger a new glue gadget and the attack continues.

Our technique is more flexible compared to the one described by Biondo. By
using a glue gadget, we can easily drive continue_execution() without relying
on other SDK functions that might change in future versions.

B Conditional Chain

Conditional ROP-chain, the chain is triggered by using sgx_exception_info_t
structure that configures the initial registers (see Appendix A). The SP register
is perturbed if the value of &lastKey differs from the value of &key in order to
pivot a true or a false ROP-chain, respectively.

1 /// we set the following registers through

/// a sgx_exception_info_t structure:

3 /// rdi = &lastKey; last key exfiltrated

i+ /// rax = &key; current key loaded

s /// rdx = #offset; to pivot to the false ROP-chain
6 /// rcx = &true—chain; address of the true ROP-chain

N}

7 mov eax, dword ptr [rax] ; ret

s mov rdi, qword ptr [rdi 4+ 0x68] ; ret

9 cmp eax, edi ; sete al ; movzx eax, al ; ret
10 neg eax ; ret

11 and eax, edx ; ret

12 add rax, rcx ; ret

13 xchg rax, rsp ; ret

14 // 0x80 nops for padding
15 // beginning of true ROP-chain

28 F. Toffalini et al.

16 pop rdi ; ret

17 // context to pivot to the ROP-chain that implements the
true branch

15 &context_true

19 // address of continue_execution function

20 &continue_execution

21 // beginning of false ROP-chain

22 pop rdi ; ret

23 // context to pivot to the ROP-chain that implements the
false branch

212 &context_false

25 // address of continue_execution function

26 &continue_execution

C Context-Switch Chain

Details of the sgx_exception_info_t structures used to leak the key and to
switch outside the enclave. The structures are used according to the techniques
described in Appendix A.

1 /% ...previous sgx_exception_info_t structures... x/

> // leaks the key outside the enclave

s // memcpy (key, buff)

1 ¢txPc[2].cpu-context.rsi = &key; // address of the key

5 ctxPc[2].cpu_context.rdi = &buff; // memory regions where

leaking the key

6 ctxPc[2].cpu-context.rdx = KEY.LENGTH; // length of the key
7 c¢txPc[2]. cpu_context.rip = &memcpy;

s // prepares the next boot chain in the workspace

o // memcpy(boot_chain, workspace)

0 ctxPc[3].cpu_context.rdi = &workspace; // workspace address
11 ctxPc[3]. cpu_context.rdx sizeof (boot_chain);

12 ctxPc[3].cpu_context.rsi = &boot_chain_backup;

13 ctxPc[3]. cpu_context.rip = &memcpy;

14 // set the fake OCALL frame in the enclave

15 // memcpy(fake_frame , enclave)

16 ctxPc[4]. cpu_context.rdi = &fake_frame;

17 ¢txPc [4]. cpu_context.rdx = sizeof (fake_frame);

15 ctxPc[4]. cpu_context.rsi = &fake_frame_backup;

19 ctxPc[4].cpu-context.rip = &memcpy;
20 // saves CPU extended states for asm_oret
21 // save_xregs(xsave_buffer)

22 ¢txPc [5]. cpu_context.rdi = &xsave_buffer;
25 ctxPc[5]. cpu_context.rip = &save_xregs;
22 // sets the trusted thread as it is performing an OCALL
25 // update_ocall_lastsp (fake_frame)
26 ctxPc[6]. cpu_context.rdi = fake_frame;
27 c¢txPc[6]. cpu_context.rip = &update_ocall_lastsp;

2s // pivots to the outside—chain

SnakeGX: a sneaky attack against SGX Enclaves 29

20 // eenclu[exit] —> outside_chain

30 ctxPc[7]. cpu_context.rax = 0x4; // EEXIT

31 ctxPc[7].cpu_context.rsp = &outside_chain_stack;

32 ctxPc[7]. cpu_context.rbx = &outside_chain_first_gadget ;
33 ctxPc[7].cpu_context.rip = &enclu;

Details of the outside ROP-chains used to resume payload inside the enclave.

1 /* ...previous gadgets for shipping the password remotely
*/

> // gadgets to resume payload within the enclave

3 pop rax ; ret

1

0x2 // EENTER
5 pop rbx ; ret
s &tcs_address

7 pop rdi ; ret // rdi = —2 —> ORET
s Oxfffffffffffffffe // —2
9 pop rcx ; ret // for async exit handler

0 &Lasync_exit_pointer
11 &enclu_urts

D Preliminary Analysis of Assumptions

Table 3 contains a list of 27 stand-alone SGX projects extracted from [9]. For
each project, we indicate their category, if it used the Intel SGX SDK, the
number of trusted threads for each enclave of the project, and a note. We also
list details for each enclave, if the project contains many. We counted 24 out of
27 projects developed on top of Intel SGX SDK, two projects use alternative
SDKs (i.e., Open Enclave SDK [28] and Graphene [43]), while one contains a
simulated enclave. Among the projects based on the Intel SGX SDK, we counted
a total of 31 enclaves, and 24 out of 31 are multi-threading (77%).

30 F. Toffalini et al.

Category/Project Intel SGX SDK # of threads

Blockchain
teechain v’ 10
private-data-objects v’ 10
v’ 1
v’ 2
fabric-secure-chaincode v’ 10
v’ 8
eevim Open Enclave SDK [28]
lucky Based on a mock SGX implementation
node-secureworker v’ 1
town-crier v’ 10
v’ 10
v’ 1
v’ 6
bolos-enclave v’ 1
Machine Learning Framework
gbdt-rs v’ 1
bi-sgx v’ 1
slalom v’
Applications
sgxwallet v’ 16
sgx-tor v’ 10
v’ 10
obscuro v’ 50
channel-id-enclave v’ 10
sfaas v’ 3
phoenix Graphene [43]
posup v’ 4
tresorsgx v’ 10
Private Key/Passphrase Management
sgx-kms v’ 8
keystore N 1
safekeeper-server N 10
Database
talos v’ 50
opaque v’ 10
stealthdb v’ 10
sgx_sqlite v’ 10
shieldstore v’ 8

Table 3: SGX open-source projects extracted from [9].

